FINDING LOW-TEMPERATURE STATES WITH PARALLEL TEMPERING, SIMULATED ANNEALING AND SIMPLE MONTE CARLO

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding Low-temperature States with Parallel Tempering, Simulated Annealing and Simple Monte Carlo

Monte Carlo simulation techniques, like simulated annealing and parallel tempering, are often used to evaluate lowtemperature properties and find ground states of disordered systems. Here we compare these methods using direct calculations of ground states for three-dimensional Ising diluted antiferromagnets in a field (DAFF) and three-dimensional Ising spin glasses (ISG). For the DAFF, we find ...

متن کامل

Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering.

Population annealing is a Monte Carlo algorithm that marries features from simulated-annealing and parallel-tempering Monte Carlo. As such, it is ideal to overcome large energy barriers in the free-energy landscape while minimizing a Hamiltonian. Thus, population-annealing Monte Carlo can be used as a heuristic to solve combinatorial optimization problems. We illustrate the capabilities of popu...

متن کامل

Hybrid parallel tempering and simulated annealing method

In this paper, we propose a new hybrid scheme of parallel tempering and simulated annealing (hybrid PT/SA). Within the hybrid PT/SA scheme, a composite system with multiple conformations is evolving in parallel on a temperature ladder with various transition step sizes. The simulated annealing (SA) process uses a cooling scheme to decrease the temperature values in the temperature ladder to the...

متن کامل

Sequential Monte Carlo simulated annealing

In this paper, we propose a population-based optimization algorithm, Sequential Monte Carlo Simulated Annealing (SMC-SA), for continuous global optimization. SMC-SA incorporates the sequential Monte Carlo method to track the converging sequence of Boltzmann distributions in simulated annealing. We prove an upper bound on the difference between the empirical distribution yielded by SMC-SA and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Modern Physics C

سال: 2003

ISSN: 0129-1831,1793-6586

DOI: 10.1142/s0129183103004498